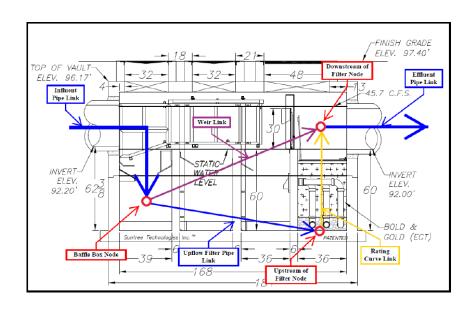
Geosyntec consultants

Don't be Baffled by Your Baffle Box

Mike Hardin, Ph.D., P.E., CFM – Geosyntec Consultants, Inc. Kevin Tyre, MS – Geosyntec Consultants, Inc.

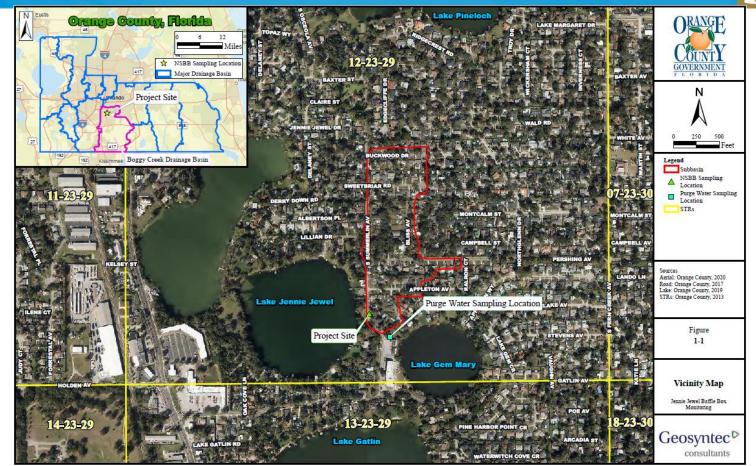


FSA 2023 Annual Conference June 15, 2023 Ft. Myers, Florida

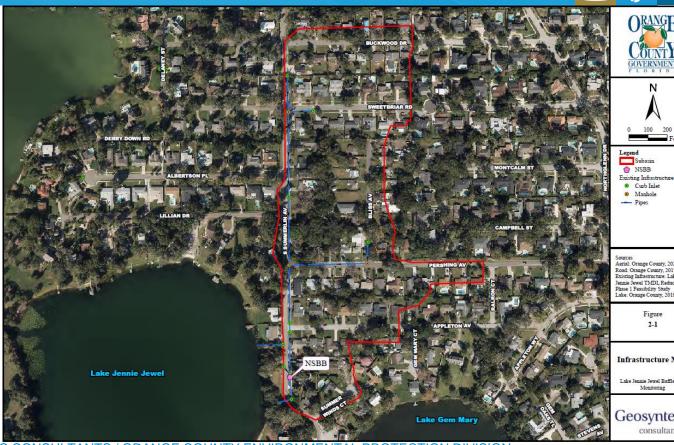
Presentation Outline

- Introduction
- Monitoring Program and Methods
- Results
- Conclusions and Recommendations

Geosyntec consultants



- County installed NSBB with Bold & Gold Upflow Filter
- 27-acre subbasin that outfalls to Lake Jennie Jewel
- Previously no treatment provided to stormwater discharges
- Predominately residential areas within subbasin
- Located within the Boggy Creek Watershed and the Lake Okeechobee BMAP area

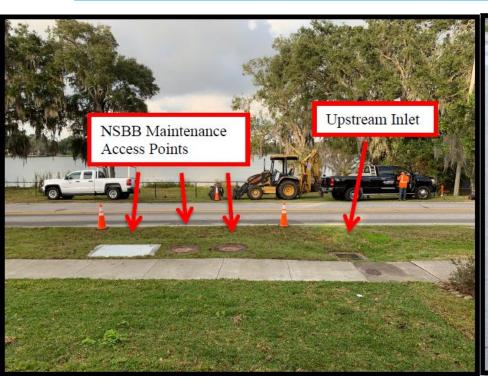


- **NSBB** originally planned for west side of Summerlin Ave.
- Moved due to conflict and box size had to be reduced

Existing Infrastructure Curb Inlet

 Manhole Pipes

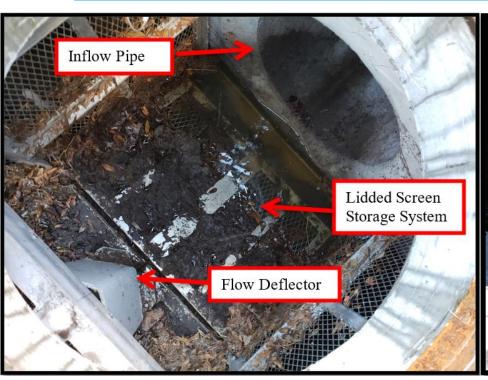
Aerial: Orange County, 2020 Road: Orange County, 2017 Jennie Jewel TMDL Reduction Phase 1 Feasibility Study


> Figure 2-1

Infrastructure Map

Lake Jennie Jewel Baffle Box

Geosyntec^D consultants



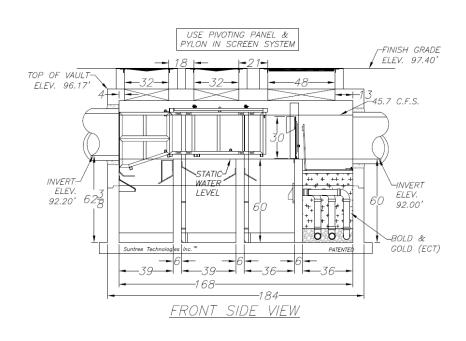
Introduction and Project Goals

Monitoring Program and Methods

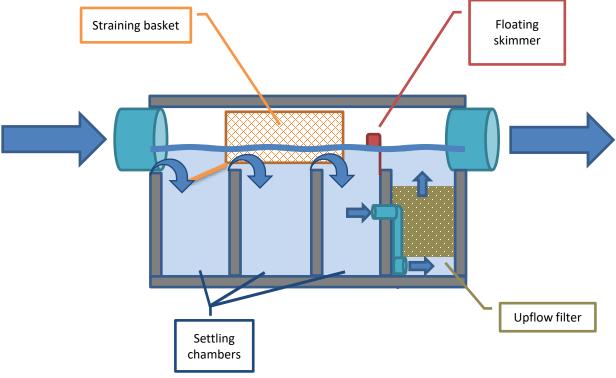
Geosyntec consultants

Monitoring Program and Methods – QAPP

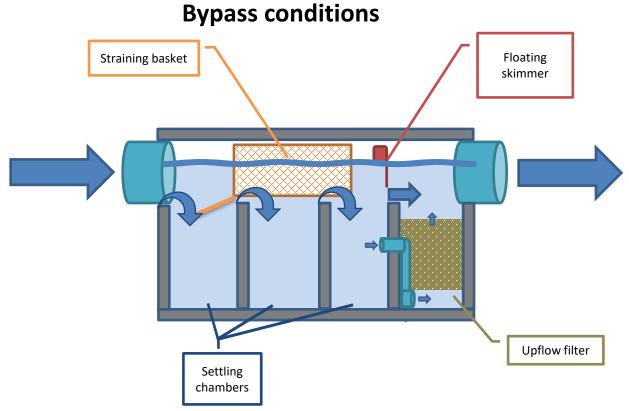
- Most important document for sampling project
- Establishes key personnel and responsibilities
- Clearly identifies site and project specific methods
 - Sampling techniques and equipment
 - Parameters to sample
 - Laboratory test methods, MDLs, etc.
- Defines documentation and data quality requirements



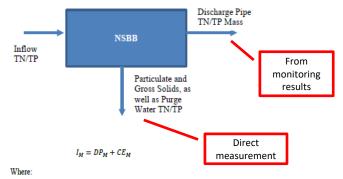
- Straining
- Settling
- Filtration/biological processes


Identify different operating conditions

- Normal operating conditions
- Bypass conditions
- Filter loading rate
 - At or below criteria (1 gal/min-sf)
 - Higher than criteria (1 gal/min-sf)



Normal operating conditions



- Need to account for all pollutant pathways
- Mass balance around the NSBB
 - Influent (dissolved and particulate)
 - Effluent (dissolved)
 - Removed debris and static water
- Combination of autosamplers and discrete event composite sampling (cleaning events)

- Autosamplers are unable to effectively sample large particulates
 - Results in bias
 - Can lead to incorrect results if debris is not evaluated

I_M = Total inflow mass of TN/TP flowing to the baffle box (g).

 $DP_M = Discharge pipe mass of TN/TP flowing out the discharge pipe of the baffle box (g)$

CEM = Cleaning event mass of TN/TP removed from the NSBB (g)

Monitoring Program and Methods

Storm Sampling

- Sequential sampling
 - Water elevation and velocity
 - Flow
 - Total volume
 - Determination of bypass conditions
 - TN & TP
- Composite sampling
 - Water elevation and velocity
 - Flow
 - Total volume
 - Determination of bypass conditions
 - TN & TP

Maintenance Event Sampling

- Grab sampling of decanted water
 - 2 grab aliquots, one at the beginning and end of decanting
 - Total volume was documented
 - TN & TP
- Composite sampling of Solids / collected debris
 - 6 discrete samples were composited
 - TN & TP
 - Total mass of debris documented

Monitoring Program and Methods – **Equipment Installation**

Sampling equipment

- Three solar-powered ISCO 6712 autosamplers
- One solar-powered ISCO Signature flow meter
- One ISCO 730 Water Level sensor
- One ISCO 2150 area velocity flow sensor
- One ISCO 674 rain gauge

Monitoring Program and Methods – NSBB Maintenance

- **NSBB** Maintenance required to ensure proper performance and function
 - Performed using a Vactor 2100
 - Two 800 gallon water drums
 - Rinse water to clean box
 - 2,800 gallon vacuum drum
 - Collect water and debris

Monitoring Program and Methods

Results

Geosyntec consultants

Results – Inflow Quality Characteristics

True influent concentration not straight forward

- Stormwater characteristics can hinder effective capture of pollutants via autosampler techniques
 - Size of organic debris can be larger than strainer openings
 - Density of debris can mean debris not evenly distributed throughout the water column
- Therefore, influent concentration needs to be calculated by performing a mass balance on the NSBB

Results – Inflow Quality Characteristics

Mass balance around the NSBB

- Dissolved component is not significant compared to particulate
- Solids accounted for
 - 84% of TN
 - 74% of TP
 - Will vary based on watershed characteristics

Date	Sediment			Purge Water	
	Total Dry Mass of Solids Collected (lb)	TP Load (lb)	TN Load (lb)	TP load (lb)	TN load (lb)
3/18/2020	7,578	4.70	62.14	0.06	0.43
7/2/2020	1,107	1.06	11.07	0.04	0.20
8/10/2020	1,264	0.63	4.30	0.01	0.07
9/16/2020	729	0.49	3.87	0.03	0.39
10/26/2020	1,418	1.98	3.97	0.06	0.13
11/16/2020	618	0.45	5.81	0.02	0.26
12/21/2020	1,610	0.11	0.01	0.10	0.13
2/23/2021	198	0.18	1.81	0.05	0.24
Total	14,522	9.61	94.74	0.38	1.85

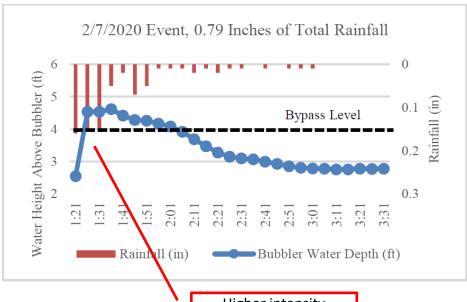
Resulting Inflow Concentrations:

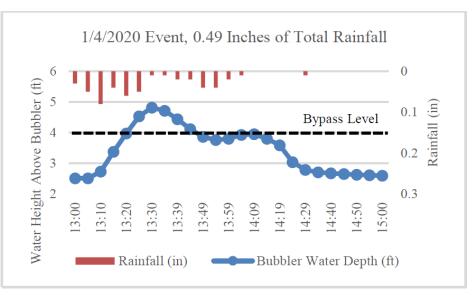
TN = 7.95 mg/L

TP = 0.93 mg/L

(P)

Results - Hydraulic and Hydrologic Analysis

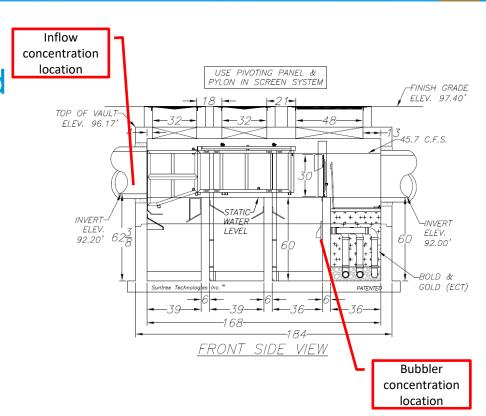



- Detailed H&H analysis performed to understand flow conditions in NSBB
 - Extent of flashy flow conditions
 - Extent of system bypass
 - Anytime water level above approximately 3.95 ft
 - Results in no treatment except straining via NSBB and settling of large grit
 - Critical to understand these flow conditions due to how much they impact performance

Results – Hydraulic and Hydrologic Analysis

Higher intensity events bypass quickly

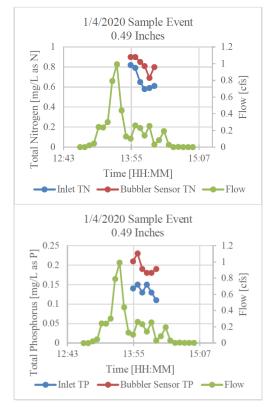
Results – Water Quality Improvement Analysis


BMP Treatment Train

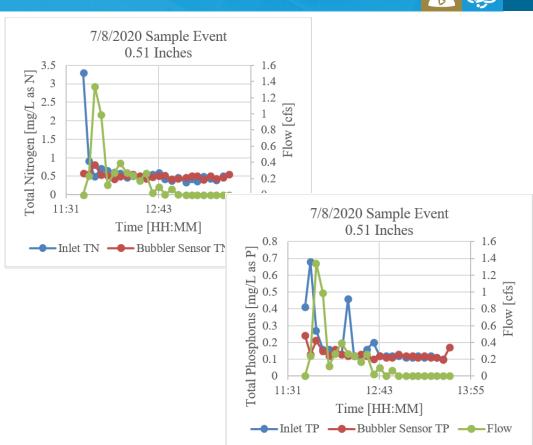
- NSBB in series with an upflow filter
- NSBB provides particulate and gross solids removal
 - Not expected to provide significant dissolved pollutant removal
 - May show export in watersheds with significant tree canopy/organics source due to degradation
- Upflow filter provides fine particulate and dissolved pollutant removal
 - Fine particles via straining and depth filtration
 - Nutrients via adsorption and biological processes

Results – Water Quality Improvement Analysis: Baffle Box

- Evaluate baffle box removal for dissolved TN and TP
 - Based on difference between inflow concentration and bubbler concentration
 - Sequential
 - Composite

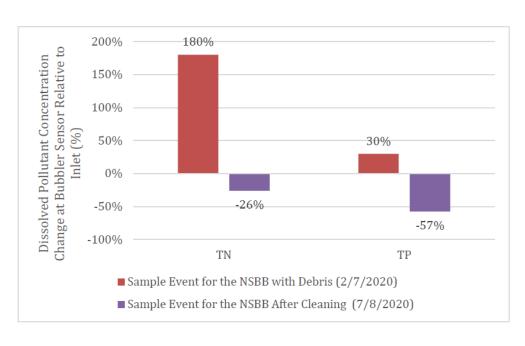

Results – Water Quality Improvement Analysis: Baffle Box

- Results showed dissolved concentrations higher at bubbler sensor for some storm events
 - May be due to flushing of nutrients released from sediments and organic debris
 - May be due to sample pairs not representing the same slug of water
 - May be due to location of bubbler sample location (lower in the water column so potential for more sediment impacts)
- This was not consistent across all storm events


Collected during non-bypass conditions

Results – Water Quality Improvement Analysis: Baffle Box

- Look at Sequential results for bypass and non-bypass
 - Shows clear first flush effect
 - During first flush influent higher than bubbler
 - Concentrations similar after

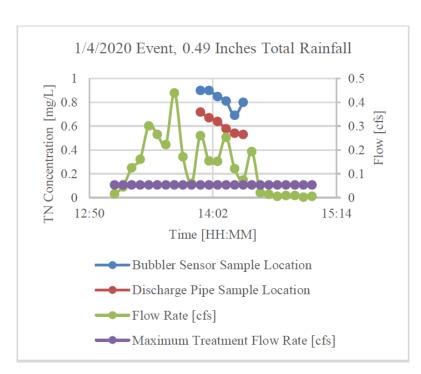


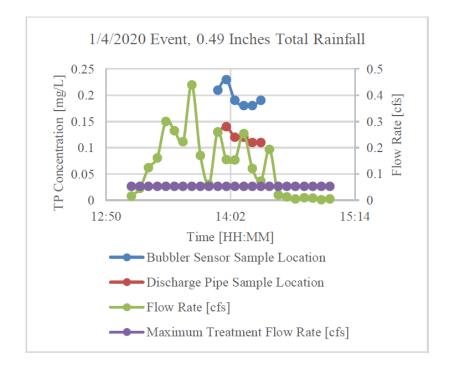
Results – Water Quality Improvement Analysis: Baffle Box Maintenance

Maintenance impacts were observed

- Removal appears to be better after cleaning (negative = good)
- Accumulated debris
 can convert from
 particulate to
 dissolved, thus
 apparent pollutant
 generation

Results – Water Quality Improvement Analysis: Upflow Filter




- Upflow filter pollutant removal determination
 - Difference in concentrations between bubbler sensor and effluent
 - Two conditions relevant for performance evaluation
 - NSBB in non-bypass mode
 - Appropriate contact time with the media
 - Determined to be 0.053 cfs based on filter size and media type

Results – Water Quality Improvement Analysis: Upflow Filter

Results – Water Quality Improvement Analysis: Upflow Filter

- Note that acceptable flow conditions were very rarely observed through the filter
- TN removal
 - Average for each storm ranged from -19% to 54%
 - Overall average for all storms = 16%
- TP removal
 - Average for each storm ranged from -9% to 38%
 - Overall average for all storms = 15%

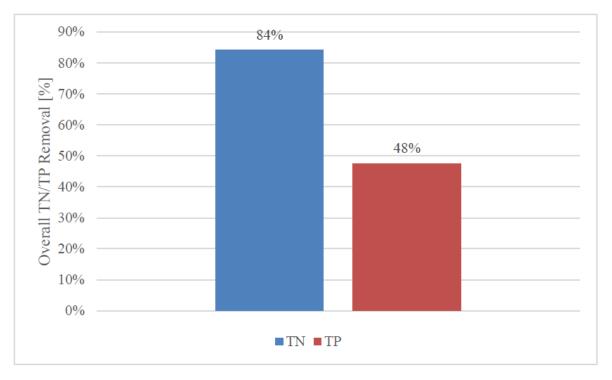
Results – Water Quality Improvement Analysis: NSBB Treatment Train

Overall pollutant removal

$$= \frac{C_T \times V_T - V_T \times C_{Discharge}}{C_T \times V_T}$$

Where:

 C_T = Theoretical influent concentration of TN/TP (mg/L), which was calculated in **Section 4.1.2**


 V_T = The total runoff volume discharged to the lake as measured by the AV sensor in the discharge pipe. This was calculated as 6,654,697 L

 $C_{Discharge}$ = The average dissolved TN/TP concentrations at the discharge pipe (mg/L)

Results – Water Quality Improvement Analysis: NSBB Treatment Train

Overall pollutant removal

Conclusions and Recommendations

Geosyntec consultants

Conclusions

- NSBB undersized for watershed
 - Flashy conditions
 - Frequent bypassing (~82% of total inflow)
 - Shows the importance thorough modeling during design
 - It was noted that due to site conditions the original design had to be changed resulting in a smaller system
- Main source of pollutant mass was particulate and gross solids (large organic matter)
 - Autosamplers not effective at collecting this component of loading
 - Accounted for ~84% of the TN and ~74% of the TP
 - A theoretical influent concentration was determined
 - TN = 7.95 mg/L
 - TP = 0.93 mg/L
 - Significantly higher than typical residential land use EMCs

Conclusions

- Max treatment flow rate of 0.053 CFS
- Most flow through filter too fast to ensure contact time
- Sequential sampling average removal
 - TN = 16%
 - TP = 15%
- Composite sampling average removal
 - TN = 20%
 - TP = 13%

Conclusions

- Overall removals
 - Includes particulate (NSBB) and dissolved (upflow filter)
 - TN = 84% or 72.5 lb/yr
 - TP = 48% or 7.5 lb/yr
 - Most of removal associated with solids removal due to NSBB
- NSBB maintenance critical to system performance

Recommendations

- H&H model should include design storms and smaller more frequent storms
- Leverage Green-Ampt method for rainfall excess estimation
- Ensure proper accounting for IA and DCIA
- Model the NSBB components

Recommendations

Perform ongoing monitoring

- Flow and water quality
- Inflow, upflow of filter, outflow, collected debris
- Monitor different sized systems
- Collect data on mass of debris collected relative to rainfall and season

With Gratitude ...

- For funding Water Quality Improvement in Orange County
- Orange County Environmental Protection Division
 - For allocating resources to Water Sciences
 - David Jones, PE, Division Manager
 - Julie Bortles, Environmental Program Administrator
- Copies of the final report can be:
 - Downloaded from The Orange County Water Atlas: https://orange.wateratlas.usf.edu/
 - Requested by emailing: mitchell.katz@ocfl.net
- Thank you for participating in the 38th Annual EWRI Water Resources Seminar!

Geosyntec

Questions?

Mike Hardin, PhD, PE, CFM Geosyntec Consultants, Inc. (321) 244-1464 mhardin@geosyntec.com Kevin Tyre
Geosyntec Consultants, Inc.
(407) 321-7030
kevin.tyre@geosyntec.com