

Improving Resiliency and Life Cycle Costs of Nutrient Reduction

Florida Stormwater Association Annual Conference June 16, 2023

Scott Shannon, PE Josh Schmitz, PE

Sludge Handling

Dewatering

NuRF Layout

Dredging

Settling

4 date

Conveyance

Alum Injection

LCWA Objective and Historical Flows

"To reliably treat the entire volume of water flowing through the Apopka-Beauclair Canal, sustaining up to a maximum flow rate of 300 cubic feet per second"

Flow Regime	Flow Range (cfs)	Number of Days	Days (%)	
Low	1 to 49	1470	71.8%	
Mid	50 to 149	310	15.2%	
High	150 to 299	266	11.4%	
Very High (Design)	> 299	32	1.6%	

Capacity of 300 cfs treats entire canal flow greater than 98% of the time.

Operational History (2010-2021)

March 2009 – August 2017 Average Flow Rate: 18 cfs Total Throughput: 16.6 Billion gallons

Operational History (2010-2021)

March 2009 – August 2017 Average Flow Rate: 18 cfs Total Throughput: 16.6 Billion gallons September 2009 – June 2021 Average Flow Rate: 64 cfs Throughput: 57.6 Billion gallons A-B Canal: 85.4 Billion gallons

Hurricane Irma (2017) and Aftermath

Operational Impacts

Woodard & Curran

Capacity of NuRF Processes

NuRF Process Diagram

Water Treatment Capacity = **300 cfs**

Residuals Processing Capacity = 74 cfs

How can we increase capacity and improve resiliency?

Primary Inflow Station

- Implement automated, self-cleaning screening system, such as a bar rack with traversing grab rake
- Will screen out floating and suspended debris
- Protects new dredges and allows them to operate within design conditions

Alum Injection and Mixing

- Proceed with carrier water/alum and dispersed injection system to improve mixing
- Establish the primary alum feed at the intake structure with secondary feeds immediately upstream of the floc ponds
- Implement real time phosphorus monitoring to enable reduced alum usage

Dredging

- Proceed with planned installation of new dredges
- The new dredges should be onboarded in a manner that ensures complete pond coverage and a consistent floc free of grit to the dewatering equipment, including an effective sand and grit prevention system.
- If the new dredges are unable to prevent sand and grit from adversely affecting the dewatering process, a dedicated grit removal technology should then be evaluated.
- Repair of dredge controls and rail guidance should be completed prior to dredges being activated

Dewatering

- Defer assessment of need for dewatering system expansion or improvements until prior improvements are completed, because these will change floc characteristics.
- Assessment should evaluate grit removal (if still necessary), polymer applicability, and type of additional capital equipment needed.

Dewatering Alternatives Evaluation

Estimated Daily Dewatering Rate (cfs)	1 Centrifuge with Increased Shifts	Potential Improvement to Floc Feed Density with 1 Centrifuge	2 Centrifuges with Increased Shifts	Potential Improvement to Floc Feed Density with 2 Centrifuges	Duration to Net Reduction in Floc after Irma (days)	Net Reduction in Floc < 10 days, or 300 cfs Dewatering?
37	1 centrifuge, 1 shift	No efficiency improvement			> 1,238	No
74	1 centrifuge, 1 shift	100% efficiency improvement			967	No
74	1 centrifuge, 2 shifts	No efficiency improvement	2 centrifuge, 1 shift	No efficiency improvement	967	No
111	1 centrifuge, 3 shifts	No efficiency improvement			486	No
148	1 centrifuge, 2 shifts	100% efficiency improvement	2 centrifuge, 1 shift	100% efficiency improvement	187	No
148			2 centrifuge, 2 shift	No efficiency improvement	187	No
222	1 centrifuge, 3 shifts	100% efficiency improvement			88	No
222			2 centrifuge, 3 shifts	No efficiency improvement	88	No
296			2 centrifuge, 2 shifts	100% efficiency improvement	4	Yes
444			2 centrifuge, 3 shifts	100% efficiency improvement	0	Yes

On-Site Sludge Handling

- LCWA's highest priority should be to identify and arrange for an off-site disposal option and begin hauling dewatered sludge off-site as soon as possible.
- Defer onsite sludge handling improvements to account for longterm disposal and new operational requirements

Instrumentation and Controls

- Replace damaged controls and implement a single communication platform for ease of operations, automation and expandability.
- Evaluate new centrifuge control hardware, software, and programming to optimize output based on feed density (after dredging improvements have been implemented)

Projected Capacity Improvements

Estimated Cost of Capital Improvements

Inflow Station	\$1,545,000		
Alum Injection	\$359,000		
Dredging	\$621,466		
Floc Conveyance	\$250,075		
Dewatering	None yet.		
Sludge Handling	None yet.		
Instrumentation	\$195,000		
TOTALS	\$2,971,000		

Total Represents **Net Savings of \$1.5M** by avoiding capital cost of second centrifuge (estimated at \$2.6M).

Additional Operational Improvements

Add Technical Resources to Meet Varying Needs and Conditions

- Five dedicated staff members
 - On-site Plant Manager with 30 years experience
 - Chief Operator
 - Three O&M Technicians
- Additional support available 24/7 as needed
 - Innovation Team
 - Heath & Safety
 - Maintenance Specialists
 - Controls and Automation
 - Engineering
- Enables emphasis on water quality and efficient, sustainable operation.

Implement Technology to Improve Cost-Effectiveness

- Implement Geospatial Asset Management Plan
- Implement Operational Data Management System
- Equip and train staff to test and monitor water quality daily
- Track maintenance expenses with focus on cost controls
- Monthly Operating Reports to LCWA

Create a Safer Working Environment

- Machine guarding of rotating parts
- Life rings for ponds and tanks
- Proper (GHS) labeling of chemical totes
- Flammable-resistant fuel storage
- Emergency lighting
- Shower and eye wash stations
- Lockout/tagout
- Arc flash analysis (NFPA 70E)
- Qualified electrical worker training

Foster Staff Growth Opportunities

- Improve technical skills: training equipment operators to be water quality technicians
- Safer working environment
- Career path, mentoring, and professional development
- Ownership opportunities

Operational investments improve life cycle costs.

Additional Resources

Technology

Health & Safety

> Professional Growth

