Stormwater Resilience: Planning and Funding for Today and the Future

Jason Kaufman, P.E. – City of Delray Beach Jorge Villalobos – Black & Veatch

2023 FSA Winter Conference November 30, 2023

Overview

- 1 About Delray Beach
- 2 Stormwater Master Plan
- **3 Project Prioritization**
- 4 Funding Needs
- 5 Rate Study & Restructuring
- 6 Future Considerations

DELRAY BEACH

- City in Palm Beach County
- 67,000 full-time residents
- Over 100,000 seasonal residents
- 16.5 total square miles
 - Water Bodies = 0.6 sq. mi. (4%)
 - Land = 15.9 sq. mi.
 - o Impervious Area = 9.0 sq. mi. (55%)
 - Pervious Area = 8.1 sq. mi. (41%)

Stormwater Master Plan

<u>History</u>

- 1993 City's first Stormwater Master Plan
- 2000 Update #1 evaluated 11 known flooding locations
- 2019 Update #2 evaluated 14 known flooding locations

Stormwater Master Plan

<u>Purpose</u>

- Study, analyze and provide recommendations and planninglevel costs for operations and capital projects
- Meet the City's desired level of service (LOS) for stormwater management, plan for sea level rise and storm surge impacts

CK & VEATCH

Regulatory Compliance

- Every 5 years, municipalities are required to provide a Stormwater Management Program to develop a needs analysis for the following 20 years
- Community Rating System requires an update every 5 years in order to lower homeowners' insurance

Stormwater Master Plan

2019 Problem Areas

- 14 known areas were selected to be part of the 2019 update
- Based on resident complains and City staff observations

Stormwater Master Plan

<u>Tasks</u>

- Data Acquisition and Evaluation
 - City, County, SFWMD, LWDD, NOAA, FEMA
 - GIS files, LiDAR data, flooding reports, ordinances, as-builts, etc.
- Hydrologic & Hydraulic Modeling
 - Existing 1D/2D hydrologic/hydraulic models using ICPR4 Software
 - Uses rainfall, land use, drainage network data and spatial coverages for topography

- Existing Conditions Level of Service
 Flood Protection Severity Score (FPSS)
- Projected Sea Level Rise Impacts

Planning Horizon	Peak Tide Elevation*
Existing	2.5
30 Years	4.2
75 Years	7.4

*Elevations are in NAVD88

Stormwater Master Plan

<u>Tasks</u>

- Water Quality Assessment
 - SFWMD Environmental Resources Permits
 - Existing non-structural and structural BMPs
- Capital Improvement Projects
 - Incorporate raising seawalls, upgrading or adding pump stations, installing backflow preventers, exfiltration trenches, pollution control measures

🛃 BLACK & VEATCH

- Stormwater Ordinance Review
 - Retaining runoff onsite, maximum lot coverage, minimum open space, BMPs, erosion control, pre vs. post runoff
- NPDES Review
 - > Analysis of current procedures
- Incorporate City-Wide Public Seawall
 Vulnerability Assessment

Flood Protection Severity Score (FPSS)

$FPSS = \sum 4E_i * NS + \sum 2E_i * MCLRS$

NS: Number of structures anticipated to flood by a 100-year, 3-day design storm event, which can include commercial, residential, and public buildings. All structures and/or buildings are considered equivalent, regardless of their size or value. (WF = 4)

MCLRS: Miles of collector and local residential streets anticipated to be impassable during 5-year, 1-day design storm event. All collector and local residential streets are considered impassable if the depth of flooding exceeds the crown of the road during the 5-year, 1-day design storm event. (WF = 2)

<u>Note</u>

To account for the varying size of each problem area, the FPSS was divided by the area of the problem area to normalize the FPSS.

The severity indicators are rated by an exceedance (E) value pursuant to the following severity score listed in the table below.

Depth of Flooding Above the FPLOS	E
Less than or equal to 6 inches	1
Greater than 6 inches and less than or equal to 12 inches	2
Greater than 12 inches	3

ACK & VEATCH

BL

Rank	Problem Area Name	Problem Area	Sub-Basin Area (Acres)	FPSS *	Weighted FPSS **
1	Seasage Drive	7	61.22	731.4	11.95
2	Beach Drive	2	22.84	105.7	4.63
3	Basin Drive	4	67.34	234.4	3.48
4	Rainberry Woods	14	71.02	190.3	2.68
5	Hibiscus Road	8	28.53	63.4	2.22
6	Bay Street	6	27.42	55.2	2.01
7	Waterway Lane	3	7.85	4 .6	0.59
8	Atlantic Ave	5	64.79	33.7	0.52
9	Spanish Circle	10	281.49	144.6	0.51
10	Harbor Drive	1	26.22	9.2	0.35
11	Banwick Park	13	59.92	17.9	0.3
12	7 th Avenue	11	14.65	1.6	0.11
13	Brooks Lane	9	19.54	1.4	0.07
14	Marine Way	12	15.28	0.8	0.05

2019 Problem Areas

- 1 through 9 (Barrier Island)
- 10 through 12 (West side of Intracoastal)

13 and 14 (West of I-95)

*FPSS = Flood Protection Severity Score

**Weighted FPSS = FPSS ÷ Sub-Basin Area

Project Ranked No. 1

- Problem Area 7 Seasage Dr
- Necessary improvements include upgrade and replace existing pump station, new drainage pipe network, swale installation and road raising

Project Ranked No. 1

- Problem Area 7 Seasage Dr
- Estimated Cost \$80,000,000
- Must also consider cost effectiveness

Funding Needs

Estimated Construction Costs

- Total = \$378 million+ (Problem Areas 1 to 11, 13 and 14)
- Problem Area 12 excluded because the City is currently implementing a flood protection project

Estimated Cost = \$20,000,000 Construction beginning Spring 2024

Problem Area Name	Problem Area	Project Cost Estimate
Harbor Drive	1	\$10,343,628.80
Beach Drive	2	\$10,621,968.41
Waterway Lane	3	\$19,400,414.09
Basin Drive	4	\$42,085,705.66
Atlantic Avenue	5	\$27,975,112.98
Bay Street	6	\$21,087,575.32
Seasage Drive	7	\$32,943,700.48
Hibiscus Road	8	\$25,470,832.60
Brooks Lane	9	\$15,902,001.70
Spanish Circle	10	\$157,191,957.44
7 th Avenue	11	\$6,396,712.90
Banwick Park	13	\$3,743,110.48
Rainberry Woods	14	\$5,200,277.37
TOTAL		\$378,362,998.23

Funding Needs

Tax Roll Year	Stormwater Utility Revenue	Debt Payments	Operating Expenses	Capital Expenses
2021	\$ 2,091,110	\$ 0	\$ 1,801,400	\$ 575,900
2022	\$ 2,077,725	\$ O	\$ 2,144,000	\$ 159,200
2023	\$ 4,151,207	\$ 562,200	\$ 2,821,900	\$ 787,100
FUTURE ESTIMATED				
2024	\$ 5,346,900	\$ 909 <i>,</i> 700	\$ 3,177,900	\$ 1,259,300
2025	\$ 6,491,100	\$ 1,562,300	\$ 3,336,700	\$ 4,592,100
2026	\$ 7,874,700	\$ 2,028,400	\$ 3,469,400	\$ 2,376,900

Notes:

1. Prior to the Stormwater Utility rate update in 2023, State Revolving Fund loans were needed to fund operating and capital needs.

2. Future Stormwater Utility Revenue assumes incremental rate increases over several years in order to generate revenue needed to fund operating and capital without State Revolving Fund loans.

Funding Needs

Potential Funding Sources

- City Stormwater Utility Revenue
- State Appropriations
- Resilient Florida Grant Program (FDEP)
- Water Quality Improvements Grant Program (FDEP)
- National Coastal Zone Enhancement Grant Program (NOAA)
- Clean Water State Revolving Fund (EPA)

Stormwater Rate Study

BLACK & VEATCH

PRIATING OF

- Stormwater Master Plan identified extensive capital improvements to address
- Increasing O&M expenses
 - Expanding operational level of service
 - Accumulated impacts of inflation
 - Over \$2M repair backlog
- Stormwater Rate in effect since 2006
 - Need for updated Impervious Data
 - Review of cost recovery approach

5-Year Financial Plan Results

Level of revenue was insufficient to meet projected O&M and Capital Needs

Completed City-Wide Impervious Area Capture

The update initiative enables:

- Complete refresh of stormwater billing data
- Determination of updated ERU Square Footage
- Evaluation of an alternative rate structure

Distribution of Parcels by Customer Class

BLACK & VEATCH

Findings

Residential Impervious Area

reflects a wide distribution

Previous Rate Structure

- Base billing unit = Equivalent Residential Unit (ERU)
 - 1 ERU = 2,502 sf of impervious area
 - ERU Rate = \$63.96 /ERU per Year
- All residential customers assessed 1 ERU
- Non-residential customers assessed ERUs based on property specific impervious area
- Stormwater charge discounts:
 - **25% for** properties within the Lake Worth Drainage District
 - 25% for properties for privately-maintained drainage systems
- 100% stormwater charge exemptions for some religious institutions

Existing Rate Structure and Needed <u>Revenue Increase*:</u> FY 2024 Required ERU Rate = \$129.24 /ERU per Year

* Required ERU Rate is determined by applying the required revenue increase to the Existing ERU Rate

Neighboring Communities Stormwater Charge Review:

- Do not offer similar discounts
- Majority do not have exemptions

Alternative Rate Structure

Key aspects of proposed rate structure:

- Base billing Unit: Stormwater Unit (instead of ERU)
 - 1 SWU = 500 sf of impervious area
- Tiered rate structure for residential parcels instead of a Uniform Charge
 - Residential parcels over 10,000 sf of IA billed based upon their actual impervious area.
- Non-residential parcels billed using the property specific impervious area based SWUs
 - SWUs = Actual IA divided by 500 square feet of impervious area
- Elimination of stormwater discounts and phase-out exemptions

Residential Tiered Rate Structure

Tier No.	Impervious Area Threshold (sf)	Median IA (sf)	Assigned SWUs
1	0 to 2,000	1,366	2.70
2	2,000 to 5,000	3,198	6.40
3	5,000 to 7,000	5,931	11.90
4	7,000 to 10,000	8,028	16.10

BLACK & VEATCH

Assigned SWUs = Median IA divided by 500 square feet of impervious area

Determination of Unit Rates

Example Customer Bill Impact – Residential Tier 2

BLACK & VEATCH

Previous Billing Data and Rate Structure

Assessed Impervious Area	Existing ERUs	Existing ERU Rate Annual Bill (EV 2023)	Updated ERU Rate Annual Bill (EV 2024)
Sq. Ft.	#	\$/Year	\$/Year
NA	1	63.96	129.24

Updated Billing Data and ate Structure

Updated	Tier	Assigned SWUs	Annual Bill
Impervious Area		(2024)	(2024)
Sq. Ft.	No.	#	\$/Year
3,354	2	6.4	86.02

Notes:

Previous One ERU = 2,502 square feet of Impervious Area

Previous ERU Rate = \$63.96/ERU per year; Updated ERU Rate (FY 2024) = \$129.24/ERU per year

NA: Not Applicable

One SWU = 500 square feet of Impervious Area

FY 2024 SWU Rate = \$13.44/SWU per year

Neighboring Communities Comparison

BLACK & VEATCH

* Communities that increased rates between FY 2022 and FY 2023

Benefits of Updated Stormwater Rate Structure

Reflect Current Program Needs

- Covers Operating Costs
- Provides Capacity for Capital Program Financing
- Provides Necessary Additional Resources Dedicated to Stormwater Management

Address City Stormwater Obligations & Customer Needs

- Supports Flooding Mitigation
- Enables Public Health & Safety
- Supports Neighborhood & Economic Enhancements

Defensible Policies

- Recognizes the Wide Range in Residential Impervious Area
- Establishes Reasonable Cost Recovery
 Approach
- Aligns with Neighboring Community charge assessment

Sustainable & Dedicated Funding

- Enables Revenue Stability
- Timely Investments in Capital Program
- Increases to Resource Capacity
- Effective Billing with Updated Billing Data

Future Considerations

- Construction Costs Increasing / Inflation
- Additional Regulatory Requirements
- Available Grants

CK&VEATCH

- Monitoring of Forecasted Sea Level Rise
- Updated FEMA Flood Maps
- Coastal Resiliency Adaptation Plan

(using a federally compliant Vulnerability Assessment)

Thank you!

Jason Kaufman, P.E. Engineering Division Manager City of Delray Beach <u>kaufmanj@mydelraybeach.com</u>

Jorge Villalobos Global Advisory – Strategic Advisory / Regulatory Support Black & Veatch

