Titusville Causeway Multi-Trophic Shoreline Stabilization and Resiliency Action Project Carolina Alvarez Ryan Mitchell, P.E.

MERRITT ISLAND NATIONAL WILDLIFE REFUGEE

About the Titusville Causeway

- Located in Brevard County
- Built in the 1940s
- Connects City of Titusville the Merritt Island National Wildlife Refuge (MINWR) and Kennedy Space Center (KSC)

About the Titusville Causeway

- Critical habit for many plant and wildlife species
- Home to one of the State's largest spawning sites for horseshoe crabs
- Extensively used for public recreation
 - Waterfront access
 - Bike/Hike trail to MINWR
 - Popular viewing spot for KSC launches

Historical Imagery and Timeline

Causeway erosion and shoreline degradation

Existing concrete riprap along the shoreline

Time For Restoration

- Critical infrastructure protection storm surge and wave driven wind energy
- Recreational use of the sandy beach and shallow water environment along the Causeway
- Living Shoreline restoration and coastal resiliency
- Remove armored shoreline
 - Habitat restoration to benefit fish and wildlife
 - Seagrass restoration in shallow water habitat

Why is this project important relevant to the coastal community?

- Critical infrastructure protection of shorelines.
- Failing seawalls, riprap armored shorelines, and eroded shorelines.
- Sea level rise and storm surge resiliency
- Bridging ecological functions and recreational access into infrastructure projects

Design, Planning and Engineering Funding

Public Meeting – June 2021

Over \$4 Million in Project Funding

Additional Funding:

Fish and Wildlife Foundation (seagrass) = \$500K Florida Resilient Coastline Program Grant = \$94K FPL Contribution = \$25K FIND Fill Material Donation = \$70k

Wind Direction

Wind Speed
Fetch (distance over water)
Sea Level (IRL)

Current bathymetry within the project area

WAD layout and sand re-nourishment

Table I: Summary of WADs array design. Note that Alt. 5 and 6 are 12 m further seaward and include a curved section to protect the eastern shoreline.

	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5*	Alt. 6*	No WADs
Extension in meters above mean sea level	0.6 m	0.6 m	0.6	0.8 m	0.6 m	0.8 m	
Gaps between WAD arrays	9 m	15 m	Overlap- ping gaps	12 m	9 m	6 m	
Other pertinent category	double rows	double rows	double rows	double rows	double rows	double rows	
WADs array performance: average nearshore wave height. % in bracket represent wave-energy reduction as compared to the existing condition.							
Mean tide level	0.25 m (61%)	0.30 m (44%)	0.15 m (86%)	0.25 m (61%)	0.20 m (75%)	0.15 m (85%)	0.40
Spring tide level	0.35 m (75%)	0.40 m (67%)	0.20 m (92%)	0.35 m (75%)	0.30 m (82%)	0.20 m (92%)	0.70 m
Spring tide + 0.5 m surge	0.5 m (75%)	0.55 m (70%)	0.45 m (80%)	0.40 m (84%)	0.40 m (84%)	0.25 m (94%)	1.0 m
Spring tide + 1 m surge	0.7 m (66%)	0.75 m (61%)	0.65 m (71%)	0.60 m (75%)	0.65 m (71%)	0.50 m (83%)	1.2 m
Efficacy of design 1-10 scale	5 (69%)	3 (60%)	8 (82%)	6 (74%)	7 (78%)	9 (89%)	

Model

- USACE Coatal Modeling System (CMS-Wave)
- Developed by Ping Wang, Ph.D University of South Florida

<u>Design Scenario</u>

- Wind = 40 MPH wind from SSE
- Storm surge = 1.5 ft storm surge
- Wave height = 3-4 ft

<u>Wave Attenuation</u> Waves reduced by 2.3 ft

Model

- USACE Coatal Modeling System (CMS-Wave)
- Developed by Ping Wang, Ph.D University of South Florida

Design Scenario

- Wind = 75 MPH wind from SSE
- Storm surge = 3 ft storm surge
- Wave height = >4 ft

<u>Wave Attenuation</u> Waves reduced by 2 ft

Shoreline Stabilization

SHORELINE STABILIZATION PLANTING ZONE

Common Name	Scientific Name	Quantity	Spacing	Zone	
White Mangrove	Laguncularia racemosa	140	10 ft on center	Estuarine	
Red Mangrove	Rhizophora mangle	140	10 ft on center	Estuarine	
Silver Buttonwood	Conocarpus erectus	140	10 ft on center	Estuarine	
Saltgrass	Distichlis spicata	1500	3 ft on center	Estuarine	
Perennial Glasswort	Salicornia perennis	1500	3 ft on center	Estuarine	
Saltmeadow Cordgrass	Spartina patens	1500	3 ft on center	Estuarine	
Sea Oxeye	Borrichia frutescens	1100	3 ft on center	Transitiona	
Seaside Goldenrod	Solidago sempervirens	1100	3 ft on center	Transitiona	
Seashore Paspalum	Paspalum vaginatum	1100	3 ft on center	Transitional	
Sea Purslane	Sesuvium portulacastrum	1100	3 ft on center	Transitiona	
Smooth Cordgrass	Spartina alterniflora	1100	3 ft on center	Transitional	
Seagrape	Coccoloba uvifera	800	5 ft on center	Transitional	
Cabbage Palm	Sabal palmetto	75	20 ft on center	Upland	
Gumbo Limbo	Bursera simaruba	75	20 ft on center	Upland	
Railroad Vine	Ipomea pes-caprae	220	10 ft on center	Upland	
Sea Oats	Uniola paniculata	220	10 ft on center	Upland	
Muhly Grass	Muhlenbergia spp.	2500	5 ft on center	Upland	
Smooth Cordgrass	Sparting alterniflorg	2500	3 ft on center	Upland	

Notes

Plant spacing provided only to demonstrate sufficient quantities throughout the habitats. Plant installation shall be in a manner to mimic natural vegetative communities with plant species in clusters, not linear rows. Plant species should be alternated in groups, to provide greater long-term survival for each species type. Coordination efforts with Brevard County Natural Resources Management Department is required prior to plant installation.

All plants shall be watered and/or staked in place as needed for a minimum of 6 months.

In areas where existing desirable vegetation remains, proposed plantings will not be installed. If desirable vegetation can be successfully transplanted onsite following regrading efforts, proposed plantings can be reduced.

A total of 23 mature mangrove trees are proposed to remain. If during construction efforts the designated trees cannot be saved, 4 mangroves must be installed as replacement. This count is in addition to the quantity listed in the table on this plan.

80% planted species survival is required after one year of monitoring. If the percentage is not demonstrated, replanting efforts will be required.

Minimum of three years maintenance and monitoring required throughout restoration area. No more than 5% exotic species coverage and at least 80% desirable species coverage required in order to meet success criteria. Annual reports required to be submitted to SJRWMD in August following initial report submittal upon completion of restoration and planting efforts.

tely lised in the table on this not demonstrated, replaring No more than 5% exorinon completion of resonance No more than 5% exori-No more tha

2,000 ft Shoreline Stabilization Planting Plan

Seagrass Survey performed on May 2019

Updated June 2020

Aquatic Resource Survey 2021

Seagrass Meadow Restoration Plan

- Benthic, Seagrass and Shoreline Survey
- Wave Modeling
- Design Plans and Specifications
- Sovereign Submerged Lands SSL Easement
- Shoreline Planting Plan & UMAMs
- Seagrass Meadow Restoration Plan
- Flow Monitoring and Sediment Transport

- St. Johns River Water Management District
- US Army Corps of Engineers
- Florida Department of Environmental Protection
- Florida Department of Transportation

Project Details

TYPICAL WAD PROFILE SECTION

N.T.S.

Project Details

What are Wave Attenuation Devices (WAD's)?

E.G. Simmons Park Hillsborough County, FL

Shoreline Protection

Breakwater arrays (WAD's) provide a multi-functional approach to shoreline restoration and ecological functions.

Sunken Island

WAD arrays as breakwater reefs

WAD's quickly transition into reef habitat as structure for fish and marine wildlife.

Future Shoreline- Representative Cross Section

SPECIAL THANKS TO OUR PROJECT PARTNERS

Office of Resilience and Coastal Protection

Brevard County Tourist Development Council

Any Questions?